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Abstract :  The valence force field model developed for the study of phonon dispersion relations between frequency 

and wave vector along with the symmetry directions of some tetrahedrally bonded binary compounds. Results for 

phonon dispersion curves of Silicon Carbide are presented in this work. Calculations of phonon dispersion curves for 

each crystal are done on the theoretical formulation for the elements of the dynamical matrix based on valence force 

field approximation.  
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I. INTRODUCTION 

Feldman et al2 and Schneider and Kirby5 have obtained phonon dispersion curves of -SiC-based on the 

existence of polytypes. The work of Ziomek and Pickar4 on the infrared absorption spectrum of -SiC is in 

agreement with the frequency assignments of Pickar et al4. 

No experimental neutron and scattering results are available for β- SiC. Experimental values of the elastic 

constants are also not available for β- SiC. 

 

II. METHODOLOGY 

Calculations of phonon dispersion curves for Silicon carbide crystal are done on the theoretical 

formulation for the elements of the dynamical matrix based on valence force field approximation. The 

secular equation for the normal modes of vibration of the lattice is given by  

 |𝐷𝛼𝛽 (
�⃗�

𝜎𝜎 ′
) − 𝜔2𝛿𝛼𝛽𝛿𝜎𝜎′| = 0       ................(1) 

Where𝐷𝛼𝛽 (
�⃗�

𝜎𝜎 ′
)represent the elements of the dynamical matrix and 𝜔  is the angular frequency for 

the normal modes of vibration. 𝛿𝛼𝛽 and 𝛿𝜎𝜎′ are kronecker delta functions. The element 𝐷𝛼𝛽 (
�⃗�

𝜎𝜎 ′
) in the 

present work consists of two terms: 

 𝐷𝛼𝛽 (
�⃗�

𝜎𝜎 ′
) = 𝐷𝛼𝛽

𝑅 (
�⃗�

𝜎𝜎 ′
) + 𝐷𝛼𝛽

𝐶 (
�⃗�

𝜎𝜎 ′
)      ..................(2) 

The first and second terms in the R.H.S. of the equation (2) represents the short range non-coulomb 

repulsive interaction and coulomb interactions, respectively. Each of the term is a (6x6) matrix. 

PHONON DISPERSION RELATIONS ALONG [100] SYMMETRY DIRECTION 

The expression for the frequency of the longitudinal modes can be obtained in terms of the model 

parameters α, β1,β2,β3 and charge parameter X given by  

  𝑋 =
𝑧2𝑒2

𝑎3
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The equation of frequency for the longitudinal optic (LO) as well as the longitudinal acoustic (LA) 

modes: 

 𝜔𝐿𝑂
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AT ZONE CENTRE(Γ) 

The expression for phonon frequencies at Zone center (Γ) is as follows  

𝜔𝐿𝑂
2 =

4

𝑚

𝑒2

𝑎3
[

𝛼

3
+

4

3
𝛽1 +

4

3
𝛽2 −

4

3
𝛽3 +

2𝜋𝑧2

6
]        .................(5) 

and  

 𝜔𝐿𝐴
2 (𝛤) = 0         .................(6) 

where  is the reduced mass defined by     

1

𝑚
=

1

𝑚1
+

1

𝑚2
         ................ (7) 

     (𝑚2 > 𝑚1)  and X is the charge parameter given by  

𝑋 =
𝑍2𝑒2

𝑎3
 

 

AT ZONE BOUNDARY (X) 

The equations (3) and (4) reduce to the following expressions at the zone boundary  

𝜔𝐿𝑂
2 (𝑋) =
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TRANSVERSE MODES  

At zone centre 

𝜔𝑇𝑂
2 (𝛤) =
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2 (𝛤) = 0         ...............(11) 
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AT ZONE BOUNDARY (X) 

The frequencies of transverse optic and transverse acoustic modes are given by  

𝜔𝑇𝑂
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where, 
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PHONON DISPERSION RELATION ALONG [110] SYMMETRY DIRECTION  

 The frequencies of the longitudinal and transverse phonons are given by the following expressions:   

LONGITUDINAL PHONON MODES  
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TRANSVERSE PHONON MODES  
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III. RESULTS AND DISCUSSION 

No experimental neutron and scattering results are available for β-SiC. Experimental values of the elastic 

constants are also not available for β-SiC. The theoretical values of the elastic constants C11, C12, C44 are 

reported by Tolpygo6. In the present work the theoretical values of elastic constants and phonon frequencies 

obtained from the Raman scattering experiment at the zone center and zone boundary 

 

Table-1: Physical quantities used as input data and values of UVFF model parameters for SIC  

 

Input data   

Macroscopic Physical 

Data  

Frequencies of Critical 

point phonon in units of 

1012 cps 

Calculated values of 

parameter in units of 

 dyne cm-1 

C11=35.23 ×1011 dyne cm-2 νLO (Γ) = 29.14 α = 319.1938 

C12=14.04 ×1011 dyne cm-2 νTO (Γ) = 23.86 β1 = 7.1517 

C44=23.29 ×1011 dyne cm-2 νLO (x) = 24.86 β2 = 21.4560 

2a = 4.348 ×10-8 cm νLA (x) = 19.20 β3 = 81.0294 

m1=19.7684 ×10-24 gm  νTO (x) = 22.83 X= 24.460 

m2 =46.2361 ×10-24 gm  νTA (x) = 11.19  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-1 : Phonon dispersion curves of silicon carbide along symmetry directions.  

Circles are the experimental results 
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[100] direction has been used to obtain the model parameters. The input physical data and the values of 

model parameters are shown in table 1. calculated values of model parameters are used to calculate the 

phonon dispersion curves along [100], [111], and [110] symmetry directions in reciprocal space. These 

calculated curves with the available optical results are shown in Fig. 3.1. From the figure, it is clear that the 

calculated results are in good agreement with optical results. 

Vetelino and Mitra3 and Banerjee and Varshni8 have presented results for β-SiC based on the model 

due to Rajagopal and Srinivasan1 and the second neighbor rigid ion (SNI) model. Both models are rigid ion 

type models. The study of this compound has been also made with the help of shell model10. The lattice 

dynamic and thermodynamical properties of silicon carbideβ-SiC and other zinc blende type compounds 

have been also studied by Kunc and Balkanski7 on the basis of the deformable bond approximation model. 

Since neutron scattering data and the experimental values of elastic constants are not available the reliability 

of the calculated results of phonon dispersion is yet to be tested. 

 

 

IV. CONCLUSION 

  The study of the lattice vibrations of zinc-blende crystals has been undertaken on the basis of a 

phenomenological model that involves a reasonable small number of parameters. In the present work a rigid 

ion model utilizing valence force field approximation is developed for the lattice dynamics of zinc-blende 

compounds. The model developed involves only five disposable parameters and satisfies the condition of 

invariance of a lattice under rigid body rotation. The evaluation of force parameters does not require the 

extensive use of experimental phonon data. The valence force field model developed in the present work is 

employed to obtain the phonon dispersion curves of Silicon Carbide (SiC). The theoretical results obtained 

to explain the experimental values of phonon dispersion curves satisfactorily. Our results are more 

satisfactory compared to other theoretical predictions having a large number of model parameters which are 

evaluated employing experimental phonon frequencies.        
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